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Malaria and disease vectors
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The spread of vector-borne diseases can be influenced by drivers including movement of both the
human host and vector (Lum et al. 2004), however it is difficult to understand their impact on the
pathogen using the current gold standard epidemiological data on disease or infection prevalence.
Pathogen genomics on the other hand, connects individual infections and pathogen populations on
the basis of similarities or relatedness amongst different isolates and populations. Combining this
information with epidemiological metadata helps to identify the source of outbreaks and corridors of
transmission and understand how pathogens are evolving in response to intervention(Grad & Lipsitch
2014). Using malaria as an example, with declining transmission, the genetic exchange between
individual parasites and populations leads to more fragmented, less diverse populations (Anderson et
al. 2000) including in response to intervention (Anthony et al. 2005; Daniels et al. 2015). This spatial
clustering then requires a switch from broad ranging to more targeted approaches. Population genetic
analysis informs targeted control efforts by defining clusters as potential units of elimination, and how
they connect to each other, informing on the risk of reintroduction and disease spread. Genetic
analysis can also determine whether infections are predominantly locally acquired or imported from
other endemic areas which can help to make decisions around maintaining local control or focusing
resources elsewhere(Obaldia et al. 2015). Likewise, genetic analysis can also track the origins of
imported infections (Rodrigues et al. 2014) and drug resistance (Roper et al. 2004)

Unlike genotyping approaches targeting specific regions of the genome, whole genomic sequencing
provides complete information about pathogens that along with epidemiological ‘metadata’ can
greatly enhance control efforts(Grad & Lipsitch 2014). Indeed, pathogen genomic surveillance has
tracked the source and spread of pathogens in real time(Quick et al. 2016), the emergence of drug
resistance(Miotto et al. 2013), response to intervention(Croucher et al. 2013) and informed vaccine
design(Russell et al. 2008). It also future proofs a dataset against emerging questions such as those
pertinent to a specific geographic area or transmission setting, as they arise.

The advent and reducing cost of high throughput NextGen sequencing technologies, allowing whole
genome analysis, makes it a realistic goal to aim for implementation of genomic surveillance in
infectious disease control and elimination. We now have the technology to conduct these types of
investigations however a major challenge is how to progress from sample collection to data output in
a time frame that allows data to influence control programs and patient treatment. Real time portable
sequencing platforms, such as the pocket-sized Oxford Nanopore MinlON, can generate enough
sequence data to cover an entire pathogen genome within hours as shown for Zika (Quick et al. 2017)
and Dengue viruses (Yamagishi et al. 2017). However, approaches that translate complex genomic
datainto information that can guide control programs are needed and will require novel methodology
to take advantage of the full genomic information in an efficient, adaptive and user-friendly
manner(Kwiatkowski 2015). Importantly, this data must be widely accessible to research, public health
and clinical settings and produce interpretable output able to guide control strategies. This requires
major efforts from computer scientists and bioinformaticians to develop simple to use computational
tools to make full use of the data being generated.
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