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1 Introduction 

The term “AI” isn’t very well defined—anything that algorithms can now do, 
but which human brains previously did, is called “AI.” A lot of the questions 
you have asked relate to data security and privacy issues that don’t specifically 
relate to AI, but would apply in an AI context just as they would in any other. 

 

Figure 1: The consequences of losing public trust in data use 
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2 Questions 

2.1 Are there implications for data storage and security 
from the use of AI? 

Yes, in at least four different ways: 

Secure storage of the input data.  This isn’t a problem of AI per se,  but  a 
problem caused by the massive, and often sensitive, datasets that AI often 
requires as its input. This issue would exist even if AI were never applied 
to the data, but becomes even harder to solve when an AI system is 
dependent on having access to all the data. See Section 2.6. 

Secure storage or communication of the outputs which may convey 
sensitive information from the inputs. See Section 2.6. 

Adversarial uses of AI For example, some AIs that do well on random or 
typical data can malfunction when targeted with deliberately misleading 

examples [LM05, HJN+11, BCM+13]. This is particularly relevant in 
adversarial settings such as facial recognition for law enforcement. 

Problems of fairness associated with the use of algorithms rather than hu- 

man decisionmaking1 [CDPF+17, HBC16, O’N16]. This may be a bias in 
the algorithm, or a bias in the input data that is reflected in what the 
algorithm learns and subsequently applies. 

 
2.2 Does AI data storage present implications for different 

cultural groups within Australia and New Zealand? 

I’m sure it does, but you need to get a more expert response from some 
indigenous data sovereignty experts, such as Prof Maggie Walter from UTas or 
Prof Tahu Kukutai from U Waikato, NZ. 

 
2.3 Are there implications for the re-identification of anonymised 

data by AI, through perhaps using a combination of data 
sets? 

Yes. Rather than being a risk of AI, this is a risk of the proliferation of highly 
detailed data about individuals that AI uses—this risk would exist even if AI 
was never actually applied. The algorithms used for re-identification can be 
very straightforward—often just simple data linking [CRT17]. The more data 
available about an individual, the easier it is to re-identify a record about them. 

Of course, this is one of the many things that humans can do already but 
AI could do very efficiently on a massive scale. AI is highly effective at finding 
latent patterns in data, which makes it perfect for re-identification. 

1Of course, human decisionmaking may also be biased and unfair. 
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The pace of development in AI, and the increasing detail of data gathered 

about individuals, outstrip the progress of de-identification. This means that 
datasets get easier to re-identify over time—the risk increases because of a com- 
bination of algorithmic progress (in AI etc.) and the increasing availability of 
auxiliary data. 

 

2.4 Could this be prevented, policy space? 

Criminalizing re-identification would simply mean that Australian scientists 
couldn’t examine whether, and notify the Australian government when, a dataset 
was easily re-identifiable. This would not make re-identification any harder for 
malicious actors. 

For preventing re-identification by corporations such as credit agencies and 
insurance companies, it would be better policy to enforce some form of 
Algorithmic Transparency. For example, companies (or government agencies) 
could be required to explain to each customer what data they held about that 
customer, where they acquired it from, and how they used it to reach a decision 
about the person. 

Opportunities for redress by individuals for breaches of privacy would 
disincentivize sharing or publication of identifiable data without consent. 
Penalties for data misuse (such as discrimination or extortion) are also 
appropriate. 

Improved data protection policies are required, which will empower the 
consumer to be informed of how their data is being used, the conclusions being 
drawn from it, and a right to access, correct, and delete their data. Due to the 
covert nature of re-identification, is it also necessary for companies to be able 
to establish and demonstrate the provenance of the data they use. It should be 
beholden on them, and therefore indirectly on the supplier of the data, to 
demonstrate that data was collected with consent and is permitted to be used 
for the purpose intended. 

 

2.5 Are there issues around offshore vs onshore data 
storage? Does it actually matter where data are 
stored? 

Yes. 
If the data is stored offshore and not end-to-end encrypted, then it has to 

be assumed that it is easily available to the government of whatever country it 
is stored in, even if the cloud storage provider offers encryption at rest. 

The legal jurisdiction covering the data matters when we do not have globally 
agreed privacy standards. If the data is ever available in an unencrypted form 
on the offshore server that presents a problem for effective privacy oversight and 
may hinder appropriate redress for people whose information is included in the 
data set. 

If it is stored offshore, but end-to-end encrypted, i.e. with keys that are held 
in Australia, then it has to be assumed that the encrypted data is available to 
the government of the country in which it was stored. If the encryption is 
sound, this may be an acceptable risk, but note that most systems for end-to-end 
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encrypted file storage expose at least some metadata, such as who accessed what 
file when. Even for end-to-end encrypted data, some countries are considering 
laws that would force software companies to provide their government with a 
secondary mechanism of access to that encrypted data. It is important not to 
buy encryption software from any countries with such laws. 

If it is stored onshore in Australia, then of course this is no guarantee that 
it will be secure. Data breaches happen all the time, with attackers from within 
Australia and overseas. End-to-end encrypted cloud storage is one good tool 
for protecting the data, along with standard mechanisms for secure access and 
deletion. 

 
2.6 How can we ensure secure storage of data? 

Write the only copy onto magnetic tapes and hold them in front of a strong 
electromagnet. 

A far more interesting question is How can we ensure reasonably secure 

storage of data while also allowing appropriate access for analysis? 

 
2.6.1 Technological Solutions 

This is a very active area of research, with answers in a few main directions: 
 

• traditional access control, 

• Differential Privacy and 

• secure multiparty computation. 

These are not mutually exclusive—they could all be applied together. For 
example, a secure research environment, with formally restricted access control, 
could use Differential Privacy to perturb the answers before showing them to the 
analyst, and use secure computation for analysis on datasets stored elsewhere. 

Secure (multiparty) computation uses cryptography to allow two (or more) 
computers to evaluate a function on each of their private inputs, without re- 
vealing what those inputs are. For example, a set of pharmacists could compute 
the total number of sales of a particular medication, without revealing their in- 
dividual sale totals. This does not guarantee that the answer protects privacy: 

if the computation is an election outcome, and the vote is unanimous, then this 
reveals exactly how everyone voted. Secure computation has numerous practical 

applications and has been used in practice by Google [IKN+17], who partnered 
with a third party to compute the total number of users who had seen an ad 
and subsequently bought the item in a store. Crucially, they were able to do 
this without revealing who the customers were, or even how many had seen the 
ad or been to the store. 

Secure computation platforms are freely available online [DPSZ12, EFLL12]. 
Some use (partially) homomorphic encryption, which means that some 
computations (such as addition) can be performed while the data remains 
encrypted. 
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However, their computational speed is limited - some simple computations run 
quite fast, but more complex machine learning algorithms rapidly become in- 
feasible. 

Differential Privacy [DR+14] addresses the complementary problem: it 
limits the amount of information that can be leaked, by the answer to a query, 
about any particular individual. In its simplest form, it consists of randomly 
perturbing the algorithm’s output so as to introduce uncertainty about its true 
value, hence hiding individual details. 

In very large datasets, local differential privacy can still yield accurate 
results: each individual input is randomly perturbed first, then the algorithm 

is applied to the differentially-private data. Both Apple and Google [ACG+16] 
have run example projects using these techniques, in addition to academic re- 
search. 

It is important to understand that Differential Privacy is a bound on 
information leakage, not a guarantee of perfect privacy. If the same data is re-
used across multiple differentially-private mechanisms, information about 
individuals can gradually be more accurately inferred. 

Combining techniques from cryptography and multiparty computation with 
Differential Privacy is an active area of research. Many federated data analysis 
platforms borrow some techniques from each, though not all are designed around 
rigorous and provable security guarantees. 

 
2.6.2 Policy and regulatory solutions 
This is not solely a technology issue. Unless an entity is going to be held ac- 
countable for failures to protect and secure data there is little motivation for 
them to do so. A lack of effective regulation has led to entities showing a 
complete lack of concern for data security, which has led to numerous breaches.  
In spite of advances in security, cryptography, and information security 
management, the number and scale of breaches continues to increase. 
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-

hacks/ 

 

http://www/
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