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Quantum Machine Learning 

 
L. Hollenberg, School of Physics, University of Melbourne 
 
Intro:  
Quantum computer technology and software are in a phase of rapid development. A 
key area of interest is the confluence of quantum computing (or quantum technology 
more broadly) and machine learning (ML) – i.e. quantum machine learning (QML) 
[1,2]. There are several themes emerging in QML: quantum algorithmic versions of 
linear algebra tasks required or associated with ML; using specialised quantum 
hardware to assist ML; development of fully quantum neural networks; the use of 
classical ML for the development of quantum technology itself. At present, given that 
these are all relatively nascent areas, the nature of the impact of quantum technology 
on ML is largely an open question. However, it is clear that the confluence of quantum 
information and machine learning is an exciting area and will continue to attract a lot 
of interest – increasing the level of interaction between the communities is key to 
shaping and capturing future applications.  
  
Quantum computers: 
The development of quantum computers, on both experimental and theoretical fronts, 
has accelerated in the past few years as industry and governments have increased 
their investment into quantum technology [3]. The fundamental component in a 
quantum computer is the quantum bit, or qubit. Qubits can be formed from a range of 
physical systems which have distinct controllable states, exhibit quantum behaviour, 
and can be read-out: e.g. superconducting circuits, photonic systems, trapped atoms, 
and spins in semiconductors, to name a few [4]. In contrast to classical bits, a qubit 
can be a quantum superposition of 0 and 1 states prior to measurement. In a quantum 
computer binary strings can be encoded over multiple qubits, and the subsequent 
quantum register put into a superposition of states. Contrary to popular belief, the 
power of a quantum computer is not solely derived from the superposition over binary 
numbers, or inherently parallel evaluation of functions, rather it is the ability to interact 
the qubits and perform quantum logic generating entanglement and non-classical 
interference effects that effectively modify the probability of measuring certain binary 
outcomes (i.e. the “answer”). Put another way – a classical machine will search for the 
needle in the haystack by sifting through all hay stalks, but a quantum computer does 
it very differently: not by searching all hay stalks at the same time, but by a process 
akin to amplifying the size of the needle itself.   
 
This is an exciting time in quantum computing. Prototype small-scale quantum 
computers now exist in labs around the world, based on various physical 
implementations of the required quantum components. The most advanced of these 
are based on superconducting qubits [5,6] and trapped atoms [7] now reaching the 50 
qubit level and beyond. With the ability to interface and program quantum computer 
hardware through cloud-based systems [8], the era of quantum software and 
application development is well and truly underway.  
 
While the long-term vision of a universal (error corrected) quantum computer is 
reasonably well understood theoretically in terms of the types of tasks that could be 
carried out, the experimental and engineering challenges in realising such a machine 
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pushes the expected realisation horizon out to probably decades. Quantum algorithms 
(e.g. quantum version of BLAS) running on error corrected quantum hardware could 
in principle assist in ML applications, although in lieu of the hardware existing to test 
these algorithms and the implementation caveats imposed means their relevancy is 
still an open question.  
 
In the short to medium term the quantum computer space will be dominated by 
intermediate scale hardware comprising 100’s of physical qubits with little or no 
quantum error correction. Broadly, the key question is what applications will benefit 
from such relatively noisy intermediate scale quantum computers (NISQC) [9]? This is 
an area of intense interest with applications/algorithms already being developed for 
chemistry (Variational Quantum Eigensolver) and optimisation (Quantum Approximate 
Optimization Algorithm). For the ML space, an important question is what adaptations 
of the quantum hardware, and associated quantum software/algorithms, will be of 
most benefit for ML applications?  
 
Quantum algorithms: 
A number of approaches in the quantum machine learning space rely on the existence 
of quantum algorithms which may speed up linear algebra and/or sampling tasks 
[10,11]. As an example, consider the HHL quantum algorithm [10] for matrix inversion, 
a common task in ML problems. For the inversion of a NxN matrix required to solve a 
linear system of equations Ax=b the HHL quantum algorithm scales logarithmically in 
N (modulo caveats below). This is the usual prima facie argument that quantum 
algorithms could be useful in ML with exponential speed-up. However, this statement 
of relative algorithmic complexity does not address the comparison in actual runtimes 
as the required quantum hardware does not yet exist, and various caveats still need 
to be understood. Associated with the application of quantum algorithms to data-rich 
problems are subtle input/output issues that need to be addressed in order to fully 
appreciate their potential. On the input side, the classical data in question (i.e. the 
matrix in the case above) must be loaded into the quantum register, and presented as 
a quantum superposition. The issue of loading data into a quantum computer is well 
known, and proposed approaches such as QRAM [12] attempt to address this. On the 
output side, the HHL algorithm, for example, does not produce the solution vector x 
directly, but rather a quantum register with the components of x in superposition. As 
pointed out by several authors [13], extracting the solution vector from the output 
register could involve some N measurements and erode the exponential speed-up of 
the algorithm, although it may be possible to extract more efficiently some global 
features of x.  
 
Quantum hardware for ML sampling and neural networks: 
Distinct from quantum algorithmic approaches to sampling [11], the use of specifically 
designed quantum hardware is being investigated to accelerate difficult sampling 
problems, e.g. those encountered in training restricted Boltzmann machines [14]. For 
example, the D-Wave system is a “quantum annealer” comprising some 2000 
superconducting qubits (with relatively short coherence times) with transverse Ising 
interactions that are tunable. Here the idea is to represent the problem as an 
equivalent thermal distribution over a (complicated and highly connected) Hamiltonian 
encoded in the qubits and couplings of such a quantum annealing machine [15]. At a 
given iteration, the system is initialised in a well-known state and adiabatically evolved 
to the Hamiltonian in question and physically sampled. Limited experiments, both 
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physically and theoretically, have shown that while the approach is promising in some 
instances, issues such as limited hardware connectivity and “freeze-out” of the 
distribution mean the efficacy of this approach is still an open question [16].  
 
At the other end of the special purpose quantum hardware are proposals for fully 
quantum neural networks, i.e. a quantum Boltzmann machine [17]. It is not fully 
known what the advantages are over the classical approach, however, the pertinent 
observation here is that while ML requires non-linear effects, quantum mechanics is 
inherently linear. 
 
Classical ML for quantum technology: 
In the reverse direction, there are fairly obvious opportunities for conventional ML to 
assist the development and deployment of quantum technology itself. For example, 
the design and optimisation of complex control sequences and/or analysis of quantum 
measurement data lends itself to a machine learning paradigm, and there are a 
number of examples of this application already [e.g. 18]. Ultimately, it has been 
suggested that a quantum RBM might prove useful in resource intensive exclusively 
quantum data analysis tasks, such as quantum state tomography [19]. 
 
Summary: 
As a relatively nascent area, this brief report has only touched on some of the points 
of interaction between quantum technology and ML. This is an exciting area of 
research, and while there are indications that quantum information approaches could 
enhance ML, the actual speed-ups and applications remain open, and await actual 
quantum hardware to conclusively test [1,2] and/or discover new paradigms for using 
quantum technology in the ML space. The development of new approaches to ML 
using quantum information may in fact dictate the direction of the quantum hardware 
development (and vice-versa). In the Australian context, research and development in 
quantum hardware is very well supported through the Australian Research Council 
Centre of Excellence Scheme and the National Innovation and Science Agenda [20]. 
Research and support in quantum software, specifically associated with quantum/ML 
(and more broadly for that matter) is more diffuse – increasing opportunities for 
quantum software/hardware and ML communities to work together is an obvious 
pathway. 
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